I'm sure you could come up with at least a hundred.
This is known as a set.
Or another example is types of fingers.
This set includes index, middle, ring, and pinky.
|
Notation
There is a fairly simple notation for sets. We simply list each element (or "member") separated by a comma, and then put some curly brackets around the whole thing:
The curly brackets { } are sometimes called "set brackets" or "braces".
{socks, shoes, watches, shirts, ...}
{index, middle, ring, pinky}
Notice how the first example has the "..." (three dots together). {index, middle, ring, pinky}
The three dots ... are called an ellipsis, and mean "continue on".
(OK, there isn't really an infinite amount of things you could wear, but I'm not entirely sure about that! After an hour of thinking of different things, I'm still not sure. So let's just say it is infinite for this example.)
So:
- The first set {socks, shoes, watches, shirts, ...} we call an infinite set,
- the second set {index, middle, ring, pinky} we call a finite set.
Example: the set of letters:
{a, b, c, ..., x, y, z}
In this case it is a finite set (there are only 26 letters, right?)
Numerical Sets
So what does this have to do with mathematics? When we define a set, all we have to specify is a common characteristic. Who says we can't do so with numbers?
Set of even numbers: {..., -4, -2, 0, 2, 4, ...}
Set of odd numbers: {..., -3, -1, 1, 3, ...}
Set of prime numbers: {2, 3, 5, 7, 11, 13, 17, ...}
Positive multiples of 3 that are less than 10: {3, 6, 9}
And the list goes on. We can come up with all different types of sets. Set of odd numbers: {..., -3, -1, 1, 3, ...}
Set of prime numbers: {2, 3, 5, 7, 11, 13, 17, ...}
Positive multiples of 3 that are less than 10: {3, 6, 9}
There can also be sets of numbers that have no common property, they are just defined that way. For example:
{2, 3, 6, 828, 3839, 8827}
{4, 5, 6, 10, 21}
{2, 949, 48282, 42882959, 119484203}
Are all sets that I just randomly banged on my keyboard to produce. {4, 5, 6, 10, 21}
{2, 949, 48282, 42882959, 119484203}
Why are Sets Important?
Sets are the fundamental property of mathematics. Now as a word of warning, sets, by themselves, seem pretty pointless. But it's only when we apply sets in different situations do they become the powerful building block of mathematics that they are.
Math can get amazingly complicated quite
fast. Graph Theory, Abstract Algebra, Real Analysis, Complex Analysis,
Linear Algebra, Number Theory, and the list goes on. But there is one
thing that all of these share in common: Sets.
Universal Set
At the start we used the word "things" in quotes. We call this the universal set. It's a set that contains everything. Well, not exactly everything. Everything that is relevant to our question. | ||
Then our sets included integers. The universal set for that would be all the integers. In fact, when doing Number Theory, this is almost always what the universal set is, as Number Theory is simply the study of integers. | ||
However in Calculus (also known as real analysis), the universal set is almost always the real numbers. And in complex analysis, you guessed it, the universal set is the complex numbers. |
Some More Notation
When talking about sets, it is fairly standard to use Capital
Letters to represent the set, and lowercase letters to represent an
element in that set. So for example, A is a set, and a is an element in A. Same with B and b, and C and c. |
Also, when we say an element a is in a set A, we use the symbol to show it.
And if something is not in a set use .
Example: Set A is {1,2,3}. We can see that 1 A, but 5 A
Equality
Two sets are equal if they have precisely the same members. Now, at first glance they may not seem equal, so we may have to examine them closely!
Example: Are A and B equal where:
And the equals sign (=) is used to show equality, so we write:- A is the set whose members are the first four positive whole numbers
- B = {4, 2, 1, 3}
A = B
Subsets
When we define a set, if we take pieces of that set, we can form what is called a subset.So for example, we have the set {1, 2, 3, 4, 5}. A subset of this is {1, 2, 3}. Another subset is {3, 4} or even another, {1}. However, {1, 6} is not a subset, since it contains an element (6) which is not in the parent set. In general:
A is a subset of B if and only if every element of A is in B.
So let's use this definition in some examples. Is A a subset of B, where A = {1, 3, 4} and B = {1, 4, 3, 2}?
1 is in A, and 1 is in B as well. So far so good.3 is in A and 3 is also in B.
4 is in A, and 4 is in B.
That's all the elements of A, and every single one is in B, so we're done.
Yes, A is a subset of B
Note that 2 is in B, but 2 is not in A. But remember, that doesn't matter, we only look at the elements in A. Example: Let A be all multiples of 4 and B be all multiples of 2. Is A a subset of B? And is B a subset of A?
Well, we can't check every element in these sets, because they have an infinite number of elements. So we need to get an idea of what the elements look like in each, and then compare them.The sets are:
- A = {..., -8, -4, 0, 4, 8, ...}
- B = {..., -8, -6, -4, -2, 0, 2, 4, 6, 8, ...}
A is a subset of B, but B is not a subset of A
Proper Subsets
If we look at the defintion of subsets and let our mind wander a bit, we come to a weird conclusion.Let A be a set. Is every element in A an element in A? (Yes, I wrote that correctly.)
Well, umm, yes of course, right?
So doesn't that mean that A is a subset of A? This doesn't seem very proper, does it? We want our subsets to be proper. So we introduce (what else but) proper subsets.
A is a proper subset of B if and only if every element in A is also in B, and there exists at least one element in B that is not in A.
This little piece at the end is only there to make sure that A is not a proper subset of itself. Otherwise, a proper subset is exactly the same as a normal subset.
Example:
{1, 2, 3} is a subset of {1, 2, 3}, but is not a proper subset of {1, 2, 3}.Example:
{1, 2, 3} is a proper subset of {1, 2, 3, 4} because the element 4 is not in the first set.Even More Notation
When we say that A is a subset of B, we write A B.Or we can say that A is not a subset of B by A B ("A is not a subset of B")
When we talk about proper subsets, we take out the line underneath and so it becomes A B or if we want to say the opposite, A B.
Empty (or Null) Set
This is probably the weirdest thing about sets.
"But wait!" you say, "There are no piano keys on a guitar!"
And right you are. It is a set with no elements. This is known as the Empty Set (or Null Set).There aren't any elements in it. Not one. Zero.
It is represented by
Or by {} (a set with no elements)
Some other examples of the empty set are the set of countries south of the south pole.
So what's so weird about the empty set? Well, that part comes next.https://www.mathsisfun.com/sets/sets-introduction.html
No comments:
Post a Comment